博客
关于我
腾讯优图:开源 YOLO 系列代码(含 YOLOv3 以及各种 Backbone)
阅读量:549 次
发布时间:2019-03-09

本文共 777 字,大约阅读时间需要 2 分钟。

前言最近,我们推出了一个开源的One-Stage目标检测项目,由腾讯优图实验室主导开发。这个项目包含YOLOv3及其多种backbone网络,整体基于PyTorch框架构建。

项目亮点在开源代码中,我们提供了多种YOLO版本:从Tiny-YOLOv2到YOLOv3,再到MobileNet、ShuffleNet等多种backbone网络。这些模型均经过精心优化,具备较高的检测能力和运行效率。

环境要求目前支持的环境为:

  • Python 3.6
  • PyTorch 0.4.0

性能展示在模型性能方面,我们的YOLO系列展现出显著优势。无论是mAP(实例检测精度)还是推理速度,都处于较高水平。

训练与评估支持传统的YOLOv3代码通常仅支持推理任务,而不支持完整的训练流程。在我们的开源项目中,我们不仅提供训练脚本,还详细指导用户如何实现训练和评估。完整的训练流程支持包括:

  • 模型训练
  • 数据预处理
  • 模型评估
  • 预训练权重随着项目推出,我们不仅发布了源代码,还为用户提供了预训练权重。这些权重涵盖多种backbone网络,方便用户直接体验和使用。此外,我们还提供了详细的使用说明,包括训练案例和常见问题的解答。

    海报资源在代码发布消息中,我们配有多张实用图解,涵盖了从安装环境到训练验证的全流程操作。

    开源代码链接本项目的完整代码和相关文档已发布,可以通过以下方式获取:

    • GitHub Repository
    • 代码صال算平台

    如果你对PyTorch感兴趣,或者想深入学习目标检测技术(尤其是YOLO系列),这个开源项目将为你提供一个极佳的实践平台。快来下载开始编码吧!

    作者声明作为开源项目维护者,我们非常欢迎各类贡献。如果你发现任何问题或者想要改进,欢迎提交issue,我们将会认真审核并及时处理。毕竟,一个好的开源项目需要每一位有热情和能力的开发者共同参与。

    转载地址:http://mpzsz.baihongyu.com/

    你可能感兴趣的文章
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    nmon_x86_64_centos7工具如何使用
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    nnU-Net 终极指南
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    NO 157 去掉禅道访问地址中的zentao
    查看>>
    no available service ‘default‘ found, please make sure registry config corre seata
    查看>>
    no connection could be made because the target machine actively refused it.问题解决
    查看>>